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Abstract

The IoT (Internet Of Things) represents a set of technologies that helps to create a network of smart
devices. These devices can transfer data between each other or send it to the next layer in the network.
According to IDC n.d., the number of connected devices will grow up to 41.6 billion by 2025, which leads
to significant market growth possibilities. Initially, the IoT has faced high latency problems by using only
cloud computing solutions.

Fog computing has recently emerged as an extension for cloud computing, which aims to move
computa tional tasks closer to the edge. The introduction of serverless computing has produced new IoT
challenges related to the allocation of the functions between the fog and cloud layers. Thus, the article
proposes a prediction-based framework that will choose where each function will be executed based on its
execution history. The decision will be made using the machine learning model, which will be trained and
tested based on the input features.

Keywords: Machine Learning, Serverless computing, Internet Of Things

1. Introduction

The Internet of Things (IoT) aims to expand the possibilities of the Internet for collecting and
processing a large amount of data. The IoT technologies join billions of internet-enabled sensors for
continuous data exchange and further analysis. As stated in Koniagina et al. 2020, the global market of
IoT has been shared between four main sectors: Smart cities (26%), Health (20%), Agriculture (14%). By
using smart devices, the given industries can monitor and automate their processes to enhance customer
experience and save time and costs. The IoT ecosystem has been divided into four essential parts:

1. Sensors are the backbone of the IoT environment that is accountable for collecting and processing data.

2. Protocols helps to build a communication channel between the devices and the cloud. The primary
accountability of the protocols is to transfer collected data within diverse layers of the IoT network.

3. IoT Gateway is the layer between the devices and the cloud. All data coming from the sensors have
to go through the IoT Gateway and then reach the cloud.

4. IoT Cloud receives the accumulated data and performs complex operations and analysis to make cor
responding decisions. Usually, the cloud servers are located far from the end devices, which
produces an increase in the request delay.

The concepts cloud computing and IoT are operating together to provide a platform for collecting and
processing the data, which is called Cloud Of Things. However, as stated by Jahantigh et al. 2019, cloud
computing can produce performance issues when dealing with high volume data. One of the problems
with cloud computing is the processing and computing time, which causes real-time analysis difficulties.
Further, the traditional-cloud based IoT systems may encounter high latency or downtime issues that may
not be
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permissible for the IoT devices that need a quick response time. As a result, in January 2014, Cisco intro
duced a new concept of Fog Computing, which brings cloud computing capabilities closer to the edge
devices Solutions 2015.



Fog Computing is a decentralized framework where the data is processed and analyzed at the edge of
the network. It is essential to specify that the Fog Computing can not be offered as a replacement for cloud
computing but rather as an extension of the existing network. The critical components in the Fog
architecture are fog nodes that have a hierarchical structure. The fog nodes are arranged close to the
user, and this data can be managed locally instead of transferring to the cloud. The given fog nodes have
more processing power than the end devices and can perform tasks locally to decrease the amount of
data sent to the cloud.

Figure 1: Fog Layer

The FaaS (Function-as-a-Service) is another promising architecture for using both in Fog and Cloud
layers. As stated by Adhikari, Amgoth, and Srirama 2019, the primary goal of serverless architecture is to
gener alize management and capacity planning decisions from the developers. In such architecture, the
resource pricing is calculated based on the number of resources the application has used compared with
other types of cloud computing that require pre-purchasing of resources. The essential component in
serverless computing is serverless functions that enable the users to execute independent modular
chunks of functionality in the cloud. In comparison with microservices, the serverless architecture splits the
monolith project into small executable pieces which can be scaled dynamically.

However, because both Fog and Serverless computing are relatively new technologies, there are open
issues related to the allocation of the functions between the Fog and Cloud layers. In such a case, the
developers have to analyse the history of all serverless functions and, based on that, decide where the
serverless function should be executed. Most of the time, it is a time consuming and inaccurate process,
because the relationship between parameters influencing the response time is considered intricate.

Thus, the article introduces a new framework for a serverless allocation between the layers using a
back propagation algorithm. The proposed framework will firstly generate a dataset based on the
configured FaaS environment and then determine which VM parameters are affecting the response time.
The framework’s essential outcome is a decision-making model that developers can use to decide where
to execute the serverless functions based on the history of execution.

3
2. Related Works



There are multiple resource allocation techniques that exist in cloud computing. A new optimization
approach for Cloud computing has been introduced in a paper by Choi and Y. Lim 2016. The authors in
the given work take into consideration SLA (Service Level Agreement), which is established between the
service provider and the user. The whole algorithm is based on the auction system, where each user
makes a bid for a VM bundle within a particular time interval.

Another resource allocation method has been proposed by Deng et al. 2016, which aimed to decrease
the transmission latency between the Fog and Cloud layers. The author investigates the possible balance
between the delay in resource transmission and power consumption of the fog and cloud nodes. The
paper proves that the fog layer is possible for executing various computing services with lower latency
compared to the cloud layer.

Lee, Saad, and Bennis 2017 specifies an algorithm for a task distribution between the fog and cloud
nodes. The central idea behind the proposed framework is to build fog networks with chosen fog nodes to
minimize the latency of tasks requested by the user. Abouaomar et al. 2019 also studied the resource
allocation possibilities between the fog and cloud layers based on the device configurations.

The article was written by Alli and Alam 2020 describes the architecture of Fog computing and the new
opportunities that can be achieved with it. The authors look deeply into the ecosystem of the IoT-Fog
Cloud environment and open challenges such as the computational offloading, which will be investigated
in the future sections. In Sarkar et al. 2019, the authors proposed a framework for the usage of serverless
computing in smart buildings. The paper outlines the experiment conducted with IoT devices and one of
the FaaS platforms to prove that the fog nodes have less latency than the cloud nodes. However, one of
the drawbacks of the proposed solution is that the developers need to manually determine the
environment for the execution of the functions (either cloud or fog).

The paper introduced by J. Li et al. 2017 also describes the opportunities for using deep learning
methods in the fog layer. The authors focus on explaining the advantages and disadvantages of applying
ML algorithms in the fog layer instead of the cloud. The article also contains the examples and discussions
about frameworks that use the ML algorithms directly in the IoT devices. The paper written by L. Li, Ota,
and Dong 2018 describes the advantages and disadvantages of applying ML algorithms in the fog layer
instead of the cloud. The article continues with the discussion of frameworks that use the ML algorithms in
the IoT devices.

Even though there are already researches related to the tasks offloading between the fog and the
cloud, there is still a gap in the knowledge. The gap can especially be perceived in the possibilities of
usage serverless and fog computing together as both of the technologies are relatively new. Thus, the
paper proposes the machine-learning-based prediction framework that predicts the response time of
functions and considers the VMs configurations to make predictions more accurate.

3. Project Specification

As described in the previous sections, with the fog layer’s introduction, it became feasible to execute
serverless functions straight in the fog nodes without transmitting the request to the cloud. However,
because the fog nodes’ capabilities are limited, it is sometimes faster to forward the request to the cloud.
Fig. 2 illustrates the design of the proposed system.

The primary step in the experiment is to transfer the request for the execution of the serverless function
from IoT device. As shown in Fig. 2, the primary step in the experiment is to transfer the request for the
execution of the serverless function from IoT device. The project uses the Node-Red platform (described
in section 7) for simulating the IoT environment. When the gateway receives the request, the function
called ”Intercepter Function” will intercept the request to determine which environment is better for the
execution of the function.



4

Figure 2: Sequential Diagram of the project

For determining each virtual machine’s current state, the intercepter function gets metrics each of them
by using method getMetrics(). The returned metrics are then used in our machine learning model for
predicting the response time of the function. The intercepter function compares the response time across
all virtual machines and selects with the lowest response time.

3.1. Project Requirements
For the simulation of the IoT network, the project follows architectural requirements specified by Cisco

2015.

Figure 3: Source Margariti, Dimakopoulos, and Tsoumanis 2020

As shown in Fig. 3, the architecture should consist of three main layers:

1. End-device Layer

2. Fog Layer

3. Cloud Layer

The Fog layer consists of end-devices with low-computational power and a set of fog and cloud nodes
that offer processing, storage, or analytics capabilities. The simulating environment’s overall infrastructure
can be represented as a graph with vertices that represent IoT devices and the edges that connect them
between the layers. The characteristics of the IoT devices may be different depending on the



requirements. According to Singh and Baranwal 2018, the Quality of Service (QoS) metrics has to be
identified in order to evaluate the expected model proposed in the following sections. Although there are
many QoS metrics currently existing, the essential evaluation metrics for the project are the following:

• Jitter represents a packet delay that may vary between the data transmission. The jitter can be a
result of network congestion or improper network configuration.
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• Bandwidth identifies the amount of data that can be transferred within a specific amount of time. It is

advisable to have high bandwidth to achieve better data manipulation.

• Connection time. The connection timeout to the server has to be specified and written in the
configuration.

• Storage. There are diverse types of storage used in the fog nodes based on the data volume and
tasks that need to be processed before sending it to the cloud. As stated by Ai, Peng, and Zhang
2018, the fog layer commonly consists of three levels: data collection, data filtering, and more
complex data operations. Further simulation has to be performed in order to identify the necessary
storage capacity for the nodes.

• Computational Power. As stated by Puliafito et al. 2020, any device that has computational capa
bilities can be added to the fog layer. The device’s computational power may vary depending on its
requirements (monitoring, processing, or storing data). According to Hub 2017, the devices such as
Raspberry Pi 3 or Android Things OS are suitable for running the fog nodes.

• Device Communication. Because the fog nodes communicate both with end-devices and the cloud
layer, it is necessary to consider the communication between them. According to Wardana and
Perdana 2018, the commonly used protocol for communication is called Message Queuing
Telemetry Transport (MQTT) protocol. The given protocol works based on the publish-subscribe
mechanism that publishes events to the MQTT broker. Thus, the given parameter requirement is to
start an MQTT client to simulate the communication between devices.

3.2. Serverless Functions used in the project
For the experiment, it is essential to define the serverless functions and deploy them to each specified

node. It is also crucial to mention that the functions used in the experiment are purely research-oriented
and are not the same as in the real environment. The primary goal for the functions is to receive and
perform appropriate operations that are being processed with various time based on the metrics of the
machine. The proposed model contains the following functions:

1. Image-processing-function. The given function is written in Python, and the main algorithm behind it
is to receive the random image with salt and pepper noise and to remove the noise from the images by
using a corresponding filter. It is essential to mention that the algorithm follows the architecture specified in
Rupani et al. 2017, which describes the techniques for image processing in the IoT environment.

As a result, the project contains two types of Image-processing-functions with contraharmonic mean fil
tering and midpoint noise filtering.

2. Sensor-data-function. The given function accepts the JSON file, which consists of sensor data gener
ated by the IoT simulation platform. The function sorts the received data by a field called ”timestamp” and
saves sorted data to the appropriate database.

3. Intercepter-function. The given function is responsible for making the final decision where the
request should be executed. As specified in Fig. 2, the initial step for the Intercepter-function is to get
metrics of all VMs at a given time. In the real environment, both Fog and Cloud layers are encountered
with network latency. Thus, for achieving the latency in the request, the Intercepter-function, simulates the
delay when sending requests to the serverless functions. The delay estimation for the given function has
been taken according to J. Li et al. 2017. The Fig. 4 represents the final algorithm of the
Intercepter-function as a Flowchart.
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Figure 4: Flowchart of Intercepter-function

3.3. Features Engineering
The feature selection is the process of extracting the features with the highest correlation rate. The

feature selection is one the most critical process when building a machine learning model, as it can either
speed up or slow down (in case of unmodified data) the training.

For the evaluation of the features, it was decided to choose Pearson, which is a widely used method to
measure the strength of the relationship between two variables X and Y. The Pearson correlation
coefficient r, takes values within a range from +1 to -1.

Table 1: Pearson Correlation

Strength of Association Negative

Positive

.1 to .3

.3 to .5

.5 to 1.0

Small -0.1 to -0.3 Medium -0.3 to -0.5 Large -0.5 to -1.0

The following formula will be used for calculating the Pearson r correlation:



rxy =n
Pxiyi −

PxiP

pyi

n
Pxi

2
− (

Pxi)
2p

n
Pyi

2
− (

Pyi)
2

(1)

where, rxy - Pearson r coefficient; n - number of observations; xi - ith observation for X variable; yi - ith
observation for Y variable

Because the Pearson r correlation changes according to the number of observations, it is crucial to
split the features selection into several iterations.

The Fig. 5a and 5b illustrate the relationship between diverse metrics and the response time. As can
be seen from Fig. 5b, the association between the input size of the request and the response time is
robust.
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(a) Relationship between CPU Percent and
Response Time

(b) Relationship between Input Size and
Response Time

After the multiple iterations, it was decided to choose the following metrics as the input parameters for
the proposed model:

• CPU Percent

• Docker CPU

• Docker Memory

• Input Size

• Bandwidth

• Processes Running

• Network Speed

3.4. Modelling
The proposed model will use a backpropagation algorithm for training a neural network model. The

backpropagation was chosen because it ensures lower error rates and makes the model more reliable by



adjusting weights based on the results from previous iterations. The main idea behind the backpropagation
is to compute the gradient of the loss function with respect to their weights at each layer and then to iterate
backward from the last layer in order to reduce the error rate.

3.5. Neural Network Structure
Neural Network is one of the techniques used in Deep Learning for predicting target segment data. In

contrast with supervised learning, the deep learning architecture consists of more that one layer that can
consist of both labeled and unlabeled data. In each layer, the weights matrix is modified using the training
data, thus making the prediction stronger.

As can be seen from Fig. 6, the neural network consists of three main layers: input, hidden, and output
layers. The input layer is built at the beginning of the workflow and is responsible for processing data and
features of the dataset. The intermediate layer between the input and output layers is called the hidden
layer. The hidden layer is a mathematical function that provides the output, which is then sent as an input
to the next layer. The main goal of the hidden layer is to reduce the training error closer to zero.
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Figure 6: Neural Network Structure Ooi, M. H. Lim, and Leong 2019

3.5.1. Backpropagation
Because the experiment works with a relatively small dataset, according to Shaikhina and Khovanova

2017, the backpropagation is one of the possible choice when working with a limited data.
Backpropagation is an algorithm for minimizing the cost function by adjusting the weights and biases in the
neural network. The algorithm computes the weights from the last layer and moves backward until it will
reach the first layer. The main element in the backpropagation is the partial derivative of the loss function
and any weight (or bias b) of the neural network. The given algorithm can be divided into the following
steps:

1) Feed-forward. In the given step, the hidden layers calculate the weighted sums of the inputs and
pass the results to the sigmoid activation function.

Zm = Wm ∗ X
T + bm

Am = σ(Zm)

• Zm represents the cost function of mth node

• Wm and bm are weights and biases of the mth layer



2) Backpropagation .The key term in the given step is an error function, which represents the error
between the real output ~y and predicted output ~y . When the feed-forward process will reach the output
layer, the backpropagation algorithm will propagate errors from the last (output) layer back to the input
layer by applying the chain rule.Thus it is necessary to compute the error function to the previous layer.
Let’s denote δ(l) as the error of the node j in layer l, then the error functions δL, δL−1, δL−2, .., δ2 are
calculated in the following way:

δL = aL − yt (2)

δl = ((θ(l))Tδ(l+1) ∗ g0(z(l))

As can be seen from Formula 2, the error of the last layer is calculated by obtaining the difference
between the predicted vector of outputs of layer L and actual output y. The errors from other layers are
calculated by multiplying the errors from the next year by weights (theta values) of the current layer. The
obtained result is multiplied by the derivative of the activation function.

As a result, the partial derivatives of the cost function can be rewrited with the respect to the δ values:

∂J(θ)
∂θl

ij= (δ(l+1)

j)
Ta(l)(3)
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3.5.2. Prediction Model Evaluation

For the evaluation of the proposed model, the project uses the coefficient of determination or R
squared (R2). The given coefficient usually is used for regression analysis and determines the accuracy of
the predicted model. The R squared ranges between 0 and 1, where 1 is the highest fit, and 0 is the
lowest.

The main goal in the project is to achieve a R2 between 0.5 and 1, which determines that the output
value can be predicted without high rate of error. The coefficient of determination is calculated by using
following formula:

R2
= 1 −SE∧y

SE−
y(4)

where, SE∧y =
P(y −∧y)2

SE−
y =

P(y −−y)2

The −y in the equation represents the mean of all y values from the dataset, and ∧y represents the
predicted value of y.

4. Technical Implementation

4.1. IoT Simulation
The IoT simulation process tried to meet the QoS requirements specified in section 3.1. The project

uses Node-red open source platform for simulating the IoT environment.



Figure 7: IoT simulation with Node-Red

As can be seen from Fig. 7, the simulation environment consists of multiple layers:

1. The IoT simulator - is the JavaScript file that generates mock device data (e.g., Temperature, Air
Quality, and UV Index) and sends it to the fog node.

2. As was described in section 3.1, the fog layer can contain multiple tiers of nodes, each of which is
responsible for a specific task. The simulated environment consists of two tiers. The first tier contains
a proxy-node, which is responsible for making decisions related to the serverless allocation. The
second tier consists of fog and cloud nodes responsible for the execution of the serverless function.

According to the QoS metrics, the fog nodes can be simulated using virtual machines with predefined
configurations.

In the proposed model, the data is obtained from the functions running both on the Fog and Cloud
layers. Thus to simulate the IoT environment, each segment will have two Virtual Machines running with
the configurations shown in the Tables 2 and 3.

# vCPU cores

Virtual Memory CPU Capabilities

2048 MB 2.1GHz

1096 MB 1.82GHz

VM1 1
VM2 1

Table 2: Virtual Machine parameters for the Local environment 10
# vCPU cores

Virtual Memory CPU Capabilities

7500 MB 2.2GHz

3500 MB 1.82GHz

VM1 2
VM2 1

Table 3: Virtual Machine parameters for the Cloud environment



It is necessary to mention that the VMs computational capacity shown in Fig.2 and 3 are defined based
on the QoS metrics and from the project written by Mahmud and Buyya 2019, which describes the ways to
simulate the Fog environment.

4.2. OpenFaaS Configuration
As described in the previous section, the experiment includes four virtual machines which are

executing serverless functions specified in described 3.2. The proposed model was decided to use
OpenFaaS open-source platform to build and deploy serverless functions.

The implementation of OpenFaaS architecture has to follow requirements specified in official
OpenFaaS documentation.

Figure 8: Kafka architecture (Source https://www.openfaas.com/blog/kafka-connector/)

Fig. 8 represents the implementation of the serverless architecture, which is taken from the official
OpenFaaS documentation. At the top of the architecture is the Kafka message broker, which can be used
to communicate between the fog nodes. The integration between the OpenFaaS platform and Kafka
broker is achieved by using Kafka Connector. The Kafka connector then uses the OpenFaaS Gateway for
functions invocation.

Fig. 9 represents the stack of technologies that will be used for the OpenFaaS implementation. At the
bottom of the stack is the Docker platform. Docker is an open-source platform that enables developers to
package and run applications inside the containers (Docker n.d.). The given platform creates an isolated
environment inside the host machine and enables us to deploy as many containers as necessary.

11



Figure 9: Technology Stack used in the experiment

The Docker Swarm lies at the top of the Docker and is a container orchestration tool that manages mul
tiple containers configured together in a cluster. The user can either create a new Swarm or join already
existing Swarm. Docker Swarm is usually created by one or multiple Docker Engines, which are called
nodes.

In order to start working with custom serverless functions, it is necessary to run OpenFaaS main com
ponents at the top of Docker Swarm. These components can be deployed locally by running OpenFaaS
script inside the project folder which is cloned from the official GitHub repository (https://github.com/
openfaas/faas.git)

4.3. Backpropagation Implementation
For the implementation of the algorithm described in section 3.5.1, it is necessary to identify steps that

will help to create a foundation of source code.

Figure 10: Steps for the model training

As it can be viewed from Fig. 10, the implementation has been divided into four main steps, which will
be described profoundly later. For the accomplishment of the steps specified below, the project will use the
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open-source library called Keras. Keras provides with python deep learning API for working with machine
learning algorithms more flexibly .

1. Initialize Network. According to the official documentation, the Keras consists of a sequence of
layers wrapped into the container called Sequential class (https://keras.io/about/). Thus, after creating the
Sequential class, the rest layers can be attached accordingly. For instance, for the project, the following
code example has been used to initialize the network:

model.add(Dense(12, input dim=8, activation=’relu’))
model.add(Dense(8, activation=’relu’))
model.add(Dense(1, activation=’linear’))
model.add(Dense(1))

As stated in Sheela and Deepa 2013, currently, there is no general rule or theorem to determine the
adequate number of hidden layers of neurons for a neural network. Thus, the most efficient way to specify
the number of hidden layers and neurons is through tests.

As a result, after several test results, the optimal number of hidden layers for the project has been
chosen two with 12 and 8 hidden neurons, respectively.

2. Compile Network. The compilation phase converts created layers into the executable format. The
compilation phase needs to be done straight after the initialization of the network and before the training
phase. The API for the compilation of the network accepts two parameters: the optimization algorithm for
using in the training phase and the cost function to evaluate the network.

model.compile(loss=’mean squared error’, optimizer=’me’)

The optimization algorithm may differ depending on the requirements of the network. In the given ex
ample, the MSE (Mean Squared Error) is used as a default loss function for the model.

3. Train Network. Once the network has been initialized and compiled, it can start to adapt the weights
and biases according to the dataset specified in the project. The network receives the matrix X as an input
that stores all machine metrics specified in section 3.3 and an array of outputs Y which stores a response
time of each request.

Table 4: Partial X input for function-sensor-data

# CPU Docker
Memory

Input
Size

Network
Sent
Data

Processes
Running

Virtual
Memory
Used

1 20.5 0.74 0.521 113042737 2 68.4

2 87.0 0.22 0.701 115669445 4 69.8

3 100.0 0.24 0.761 116392406 9 69.1

4 56.5 0.25 0.781 116712616 1 68.8

5 100.0 8.352 1.521 153636163 7 69.4

6 15.7 1.07 1.861 163320754 9 70.3



Table 5: Y output for function-sensor-data

# Response Time

1 2.248

2 4.684

3 5.221

4 3.678
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Table 5: Y output for function-sensor-data

# Response Time

5 6.276

6 6.769

Tables 4 and 5 illustrate the example of data that is used for training the model.

loss, accuracy = model.evaluate(X, y)

The given method returns the loss and accuracy of the network in order to evaluate the performance of
the network.

5. Results and Analysis

The given section represents the experiment results, which are evaluated by using the coefficient of de
termination R2 defined in section 3.5.2. By using Keras API, it is probable to calculate training loss and
validation loss of the model. The experiment is considered successful if the loss value decreases with
each epoch during the model training.

Node Name Function Name R squared

Local Fog Node Function-Sensor-D
ata
Function-Image

Function-Second-Imag
e

0.85
0.78
0.69

Cloud Fog Node Function-Sensor-D
ata
Function-Image

Function-Second-Imag
e

0.82
0.71
0.66

As described in section 3.5.2, the R squared is essential for the evaluation of the proposed model, as it
indicates how accurate our predicted model is. Fig. 5 represent the values of R squared for the final
models. Generally, the experiment was divided into two parts: cloud node data analysis and local node



data analysis. Each part has gone through two main steps:

1. (a) Process: To start the model training, by running 150 epochs.
(b) Pre-Condition: To have valid data for training.
(c) Goal: To decrease the training and validation loss.
(d) Purpose: To make the model more accurate with each iteration. In other words, to minimize the

difference between the predicted value y (response time) and real value y when making
predictions.

2. (a) Process: Fit the trained model with new values.
(b) Pre-Condition: To have valid data for testing.
(c) Goal: To get the value of R squared greater than 0.5.
(d) Purpose: To validate the trained model, if it is suitable for predicting the future.

5.1. Results from Fog environment
By following the steps specified above, firstly, it is necessary to run iterations and to decrease the

training loss with each iteration.
As a result, The Fig. 11 validates that the step achieved the expected outcomes for the Sensor-data

function (the same output as perceived by other functions). In other words, the loss function decreases
exponentially with the increase of the number of epochs.
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Figure 11: Model Loss for Function-Sensor-Data

The second step is to fit the model with new data and to evaluate the neural network model.



Figure 12: The difference between expected and predicted values for Function-Sensor-Data in Fog

Figure 13: The difference between expected and predicted values for Function-Image in Fog 15

The Fig. 12 and 13 demonstrate the plot between predicted and expected values. As can be seen from
the plots, the predicted response time is close to the actual. Thus, it confirms that the models can be used
in our framework for predicted the response time in the future.
The achievement of the goal specified in step 2 is also evidenced by the graph Fig. 5, which demonstrates
that the R squared is higher than 0.5.

5.2. Results From Cloud environment
The Cloud layer applies the same steps that have been achieved in the Fog layer. Thus, Fig. 15 demon
strates the results from the first step, which is the exponential decrease of the training loss.



Figure 14: Model Loss for Function-Sensor-Data in Cloud

For the second step, the new test data is used for testing the trained model. The Fig. 15 and 16 illustrate
the level of proximity of predicted and actual response time.

Figure 15: The difference between expected and predicted values for Function-Sensor-Data in Cloud 16



Figure 16: The difference between expected and predicted values for Function-Image in Cloud

5.3. Final Framework
After finishing the steps specified in the given section, we will have a model that can be used for

making predictions. It is necessary to mention that the model will periodically be retrained based on the
newly received data.

The final framework is represented in the form of API through which the proxy-node can determine
where to execute to serverless function. The API receives a JSON object that will have the following key
and values:

{
”functionName”: ”value”,
”cloud”: ”metric 1, metric 2, ... , metric n”
”local”: ”metric 1, metric 2, ... , metric n”

}

As can be seen from the JSON object, the body of the request has to contain the function name that
needs to be executed, and the current metrics separated by the comma for each environment. As a result,
the response contains the name of the layer where it is better to execute the function and predicted
response time for the given layer. The response also contains predicted response time for another layer
(which is ”cloud” in the example below).

The function should be executed in ”Fog Layer.”
Predicted response time: [value]
Predicted response time for ”Cloud Layer”: [value]

The Fig. 17 and 18 illustrate the example of the request which has been sent by using Postman (https:
//www.postman.com/).
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Figure 17: The response example #1

Figure 18: The response example #2
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6. Conclusion

The article proposed a framework for predicting the response time of serverless functions in the IoT
environment. In the beginning, the problem has been identified, and the key components of the solution
have been implemented and discussed in the paper. In the proposed framework, the author firstly
investigated which input features can be used for predictions and then created a dataset to feed the
model. The ML model was then evaluated using the evaluation criteria, and the results were graphically
shown in the article. The author then showed the real usage of the framework by sending the request to
the specified API.

Currently, the author uses the ML regression model to predict the numerical value. As future work,
there is a possibility to use a classification model to predict more values in a real environment. For
instance, to predict the response time at a specific time of the day.

6.1. Critical Evaluation
The author tried to follow the IoT architecture to simulate the environment and generate the dataset.

However, the real situation can be more complicated than described in the article. Thus, the proposed
framework needs to be tested in the real world to make a full evaluation of the trained model. The critical
evaluation can be divided into two parts:

1. Evaluation of IoT simulation. It is clear that the real-world IoT platform has more complex architecture
than in the simulated. The conducted experiment has generated random values for the network
delay, which occurs in the IoT platforms. However, the simulated environment didn’t contain the
essential component that exists in the real environment: IoT Gateway. The IoT gateway is a central
device that collects all data from the devices and sends it to the upper layer. Thus, the simulated
environment can be improved by simulating the load of the gateways.
Moreover, despite the flexibility and convenience of using the Node-Red platform, it is less precise
compared to other simulating platforms as iFogSim or YAFS. The given platforms have not been
considered only because of their complexity, as it would take much time to learn them before starting
the experiment.
Another possible improvement can be scalability. The simulated environment only contains the min
imum number of IoT devices and the fog nodes because of the lack of resources of the experiment.
However, the real world example sometimes may contain hundreds of devices that communicate
with each other via specified protocols.
As stated by Law 2019, ”a simulation model should always be developed for a particular set of



objectives. In fact, a model that is valid for one objective may not be for another”. In other words, the
author wanted to concentrate specifically on the fog and cloud nodes for building a prediction model
and skipped some components in the architecture that may be important in the real world.

2. Evaluation of ML model. Frequently, the ML models tend to overfit. Overfitting is the incorrect
optimization problem in which the model can show false positives results. In such cases, the model
shows high accuracy with test data but can fail with new data from the real-world. To avoid overfitting
is necessary to have sufficient data, both training, and testing phase. Because the project’s model
has been trained by using a small dataset, there is a possibility of model overfitting in the real world.
However, the given problem can be solved by obtaining a bigger dataset in the future.
Further, the dataset has shown strong relationships between the chosen input features and the
response time, but in a real IoT environment, the input features may change or be extended. For
instance, the experiment didn’t investigate the relationship between the device power consumption
during the execution of specific function.
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8. Appendices

8.1. Appendix A: Journal Requirements
The following list represents the list of requirements specified by the journal (Elsevier n.d.):

• All sections in the article have to be numbered, and the numbers have to be used as references in the
article.

• The introduction has to contain a short background description of the topic and objectives defined by
the author.

• The abstract is required, and the references inside it should be avoided.

• If there are more than one Appendices, they should be described as A, B,...

• The title page has to contain the following information: Title, Author names, and affiliations, Present
address.

• After the abstract, the author has to specify the main keywords (max. 6).

• The article has to contain the Acknowledgements section at the end of the article.

• There are no restrictions on the formatting of the reference.

• There is no specified word limit during the submission.



20
References

Abouaomar, Amine et al. (2019). “A Resources Representation for Resource Allocation in Fog Computing
Networks”. In: 2019 IEEE Global Communications Conference (GLOBECOM). IEEE, pp. 1–6.

Adhikari, Mainak, Tarachand Amgoth, and Satish Narayana Srirama (2019). “A Survey on Scheduling
Strate gies for Workflows in Cloud Environment and Emerging Trends”. In: ACM Computing Surveys
(CSUR) 52.4, pp. 1–36.

Ai, Yuan, Mugen Peng, and Kecheng Zhang (2018). “Edge computing technologies for Internet of Things:
a primer”. In: Digital Communications and Networks 4.2, pp. 77–86.

Alli, Adam A and Muhammad Mahbub Alam (2020). “The fog cloud of things: A survey on concepts,
architecture, standards, tools, and and applications”. In: Internet of Things.

Choi, Yeongho and Yujin Lim (2016). “Optimization approach for resource allocation on cloud computing
for iot”. In: International Journal of Distributed Sensor Networks 12.3, p. 3479247.

Cisco (2015). “Fog Computing and the Internet of Things: Extend the Cloud to Where the Things Are”. In:

Deng, Ruilong et al. (2016). “Optimal workload allocation in fog-cloud computing toward balanced delay
and power consumption”. In: IEEE internet of things journal 3.6, pp. 1171–1181.

Docker (n.d.). Docker overview — Docker Documentation. https : / / docs . docker . com / get - started /
overview/. (Accessed on 08/03/2020).



Elsevier (n.d.). Guide for authors - Internet of Things - ISSN 2542-6605. https://www.elsevier.com/
journals/internet-of-things/2542-6605/guide-for-authors. (Accessed on 08/24/2020).

Hub, Arduino Project (Nov. 2017). Salutis project - Arduino Project Hub. https://create.arduino.cc/
projecthub/suai-ihpcnt/salutis-project-bf49b4. (Accessed on 08/21/2020).

IDC (n.d.). IDC: The premier global market intelligence firm. https : / / www . idc . com/. (Accessed on
08/19/2020).

Jahantigh, Motahareh Nazari et al. (2019). “Integration of Internet of Things and cloud computing: a sys
tematic survey”. In: IET Communications.

Koniagina, Mariia et al. (2020). “Development Trends of an Internet of Things in Context to Information
Security Policy of a Person, Business and The State”. In: Journal of Talent Development and
Excellence 12.2s, pp. 1181–1193.

Law, Averill M (2019). “How to build valid and credible simulation models”. In: 2019 Winter Simulation
Conference (WSC). IEEE, pp. 1402–1414.

Lee, Gilsoo, Walid Saad, and Mehdi Bennis (2017). “An online secretary framework for fog network
formation with minimal latency”. In: 2017 IEEE International Conference on Communications (ICC).
IEEE, pp. 1– 6.

Li, Jianhua et al. (2017). “Latency estimation for fog-based internet of things”. In: 2017 27th International
Telecommunication Networks and Applications Conference (ITNAC). IEEE, pp. 1–6.

21
Li, Liangzhi, Kaoru Ota, and Mianxiong Dong (2018). “Deep learning for smart industry: Efficient manu

facture inspection system with fog computing”. In: IEEE Transactions on Industrial Informatics 14.10,
pp. 4665–4673.

Mahmud, Redowan and Rajkumar Buyya (2019). “Modelling and simulation of fog and edge computing
environments using iFogSim toolkit”. In: Fog and edge computing: Principles and paradigms, pp. 1–35.

Margariti, Spiridoula V, Vassilios V Dimakopoulos, and Georgios Tsoumanis (2020). “Modeling and Simula
tion Tools for Fog Computing—A Comprehensive Survey from a Cost Perspective”. In: Future Internet
12.5, p. 89.

Ooi, Ching Sheng, Meng Hee Lim, and Mohd Salman Leong (2019). “Self-Tune Linear Adaptive-Genetic
Algorithm for Feature Selection”. In: IEEE Access 7, pp. 138211–138232.

Puliafito, Carlo et al. (2020). “MobFogSim: Simulation of mobility and migration for fog computing”. In:
Simulation Modelling Practice and Theory 101, p. 102062.

Rupani, Ajay et al. (2017). “A robust technique for image processing based on interfacing of Raspberry-Pi
and FPGA using IoT”. In: 2017 International Conference on Computer, Communications and
Electronics (Comptelix). IEEE, pp. 350–353.

Sarkar, Suvajit et al. (2019). “Serverless Management of Sensing Systems for Fog Computing
Framework”. In: IEEE Sensors Journal.

Shaikhina, Torgyn and Natalia A Khovanova (2017). “Handling limited datasets with neural networks in
medical applications: A small-data approach”. In: Artificial intelligence in medicine 75, pp. 51–63.



Sheela, K Gnana and Subramaniam N Deepa (2013). “Review on methods to fix number of hidden
neurons in neural networks”. In: Mathematical Problems in Engineering 2013.

Singh, Manisha and Gaurav Baranwal (2018). “Quality of service (qos) in internet of things”. In: 2018 3rd
International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU). IEEE, pp. 1–6.

Solutions, Cisco Fog Computing (2015). “Unleash the power of the Internet of Things”. In: Cisco Systems
Inc.

Wardana, Aulia Arif and Riza Satria Perdana (2018). “Access control on internet of things based on pub
lish/subscribe using authentication server and secure protocol”. In: 2018 10th International Conference
on Information Technology and Electrical Engineering (ICITEE). IEEE, pp. 118–123.

22


